
Recursion

1

A New Tool in Writing Algorithms

An algorithm is a sequence of steps for solving a problem.

So far, we have a particular toolkit:

conditionals

iteration

other method calls

2

A New Tool in Writing Algorithms

A recursive algorithm is an algorithm that breaks the problem into
smaller subproblems and applies the same algorithm to solve the
smaller subproblems.

3

Recursive Grading Procedure

How do I grade exams?

If I have one exam to grade, I grade it.

Otherwise, I grade 50% of the exams, then the other 50% of the
exams.

Grading 8 Exams

 Grading 4 Exams Grading 4 Exams

 Grading 2 Exams Grading 2 Exams Grading 2 Exams Grading 2 Exams

 Grading 1 Exam Grading 1 Exam Grading 1 Exam Grading 1 Exam

 Grading 1 Exam Grading 1 Exam Grading 1 Exam Grading 1 Exam

4

Recursion Stops Somewhere

Recursive algorithms eventually have to actually do some
computation step instead of just making more recurisve calls.

The base case is the case where a recursive algorithm actually does
some final work--grading the one exam in the previous case.

5

Recursive Methods

Methods can call other methods, including the method itself.

public static void countDown(int countInt) {

if (countInt <= 0) {

 System.out.println("GO!");

 }

else {

 System.out.println(countInt);

 countDown(countInt - 1);

 }

}

ZyBook animation 17.2
6

https://learn.zybooks.com/zybook/UPENNCIT591SmithFall2021/chapter/17/section/2

Practice, Practice, Practice: Largest

Return the largest number in an array of numbers.

public int largest(int[] numbers, int index) {

if <<Missing base case>>

return numbers[0];

return Math.max(numbers[index], largest(numbers, index-1));

}

largest({2, 4, 8}, 2) -> 8 , for example

7

Practice, Practice, Practice: Largest

Return the largest number in an array of numbers.

public int largest(int[] numbers, int index) {

if (index == 0) {

return numbers[0];

 }

return Math.max(numbers[index], largest(numbers, index-1));

}

largest({2, 4, 8}, 2) -> 8 , for example

8

Practice, Practice, Practice: Multiply

Multiply x * y

public int multiply(int x, int y) {

if <<Missing base case condition>> {

 <<Missing base case action>>

 } else {

return multiply(x - 1, y) + y;

 }

}

9

Practice, Practice, Practice: Multiply

public int multiply(int x, int y) {

if (x == 1) {

return y;

 } else {

return multiply(x - 1, y) + y;

 }

}

Can you think of another base case?

10

Practice, Practice, Practice: Multiply

public int multiply(int x, int y) {

if (x == 0) {

return 0;

 } else {

return multiply(x - 1, y) + y;

 }

}

11

Practice, Practice, Practice: GCD

The greatest common divisor (GCD) for a pair of numbers is the
largest positive integer that divides both numbers without remainder.

Two helpful facts: GCD(x, 0) = x and GCD(x, y) = GCD(y, x % y)

public int GCD(int x, int y) {

if <<Missing base case condition>> {

 <<Missing base case action>>

 } else {

return GCD(y, x % y);

 }

}

Example: GCD(6, 4) --> 2 12

Practice, Practice, Practice: GCD

The greatest common divisor (GCD) for a pair of numbers is the
largest positive integer that divides both numbers without remainder.

Two helpful facts: GCD(x, 0) = x and GCD(x, y) = GCD(y, x % y)

public int GCD(int x, int y) {

if (y == 0) {

return x;

 } else {

return GCD(y, x % y);

 }

}

Example: GCD(6, 4) --> 2 13

Practice, Practice, Practice: SumToK

Sum all values from 1 to k , e.g. sumToK(5) -> 15

public int sumToK(int k) {

if (k <= 0) {

return 0;

 } else {

return <<Missing Recursive case action>>

 }

}

14

Practice, Practice, Practice: SumToK

Sum all values from 1 to k , e.g. sumToK(5) -> 15

public int sumToK(int k) {

if (k <= 0) {

return 0;

 } else {

return k + sumToK(k - 1);

 }

}

15

Practice, Practice, Practice: SumToK

Sum all values from 1 to k , e.g. sumToK(5) -> 15

public int sumToK(int k) {

if (k <= 0) {

return 0;

 } else {

return <<Missing Recursive case action>>

 }

}

16

Practice, Practice, Practice: SumToK

Sum all values from 1 to k , e.g. sumToK(5) -> 15

public int sumToK(int k) {

if (k <= 0) {

return 0;

 } else {

return k + sumToK(k - 1);

 }

}

17

Practice, Practice, Practice: countChr

Return the number of times 'A' appears in a given String.

public int countChr(String str) {

if (str.length() == 0) {

return 0;

 }

int count = 0;

if (str.substring(0, 1).equals("A")) {

 count = 1;

 }

return count + <<Missing a Recursive call>>

}

countChr("ctcowcAt") -> 1 18

Practice, Practice, Practice: countChr

Return the number of times 'A' appears in a given String.

public int countChr(String str) {

if (str.length() == 0) {

return 0;

 }

int count = 0;

if (str.substring(0, 1).equals("A")) {

 count = 1;

 }

return count + countChr(str.substring(1));

}

countChr("ctcowcAt") -> 1 19

Binary Search

Used to search for a value (the target) in a sorted array.

Keep dividing the array in half

Compare the target with the value at the middle index in the
remaining array.

If the target is less than the mdidle element, then we search the
target in the left half of the array (the elements less than the
middle)

If the target is greater than the mdidle element, then we search the
target in the right half of the array (the elements greater than the
middle)

20

Binary Search

returns the position of the middle element if we find the target
there, or

returns -1 if we can't find the target.

21

Binary Search: Live Coding

22

Binary Search

public static int binarySearch(String[] A, String target, int leftBound, int rightBound)

{

if (leftBound > rightBound) {

return -1

 }

int middleIdx = (leftBound + rightBound) / 2;

 String middleElem = A[middleIdx];

if (middleElem.equals(target)) {

return middleIdx;

 } else if (middleElem.compareTo(target) < 0) {

return binarySearch(A, target, middleIdx + 1, rightBound);

 } else {

return binarySearch(A, target, leftBound, middleIdx - 1);

 }

}

23

Writing Your Own Recursive Methods

Step 1: Write the base case.

(A way to return a value without recursing further.)

Step 2: Write the recursive case.

It really is this simple, but the type of thinking that lets you
accomplish this will often take a while to learn.

24

Writing Your Own Recursive Methods

Tips:

Make sure that your base case is reachable

Your recursive calls should make the problem progressively
smaller, typically.

Consider whether or not the problem is helped with a recursive
approach

Fibonacci numbers are technically recursive, but the recursive
implementation is very bad...

25

