Recursion

A New Tool in Writing Algorithms

An algorithm is a sequence of steps for solving a problem.
So far, we have a particular toolkit:

e conditionals
e jteration

e other method calls

A New Tool in Writing Algorithms

A recursive algorithm is an algorithm that breaks the problem into
smaller subproblems and applies the same algorithm to solve the
smaller subproblems.

Recursive Grading Procedure

How do | grade exams?

e If | have one exam to grade, | grade it.

e Otherwise, | grade 50% of the exams, then the other 50% of the
exams.

Grading 8 Exams
Grading 4 Exams Grading 4 Exams

Grading 2 Exams Grading 2 Exams Grading 2 Exams Grading 2 Exams
Grading 1 Exam Grading 1 Exam Grading 1 Exam Grading 1 Exam
Grading 1 Exam Grading 1 Exam Grading 1 Exam Grading 1 Exam

Recursion Stops Somewhere

Recursive algorithms eventually have to actually do some
computation step instead of just making more recurisve calls.

The base case is the case where a recursive algorithm actually does
some final work--grading the one exam in the previous case.

Recursive Methods

Methods can call other methods, including the method itself.

countDown

(countInt <=)
System.out.println(

{
System.out.println(countInt);

countDown(countInt - 1);

ZyBook animation 17.2

https://learn.zybooks.com/zybook/UPENNCIT591SmithFall2021/chapter/17/section/2

Practice, Practice, Practice: Largest

Return the largest number in an array of numbers.

largest
<<Missing base >>

numbers[];
Math.max(numbers[index], largest(numbers, index-1));

IV R GV I A1, for example

Practice, Practice, Practice: Largest

Return the largest number in an array of numbers.

largest
(index ==) {
numbers[]:

Math.max(numbers[index], largest(numbers, index-));

IV R GV I A BEEE:] , for example

Practice, Practice, Practice: Multiply

Multiply

multiply {
<<Missing base condition>> {
<<Missing base action>>

{
multiply(x - ', y) + vy;

Practice, Practice, Practice: Multiply

multiply
(X ==) {
Y,

{
multiply(x - ', y) + vy;

Can you think of another base case?

10

Practice, Practice, Practice: Multiply

multiply
(X ==){

{
multiply(x - ', y) + vy;

11

Practice, Practice, Practice: GCD

The greatest common divisor (GCD) for a pair of numbers is the
largest positive integer that divides both numbers without remainder.

Two helpful facts: el GCD(x, y) = GCD(y, X % y)

GCD {
<<Missing base condition>> {
<<Missing base action>>

{
GCD(y, X % Yy);

12

Example: [ICRE) B

Practice, Practice, Practice: GCD

The greatest common divisor (GCD) for a pair of numbers is the
largest positive integer that divides both numbers without remainder.

Two helpful facts: el GCD(x, y) = GCD(y, X % y)

13

Example: [ICRE) B

Practice, Practice, Practice:

Sum all values from [l to [4, e.g. B AERGIRE

sumToK

<<Missing Recursive action>>

14

Practice, Practice, Practice:

Sum all values from [l to [4, e.g. B AERGIRE

sumToK

(k <= 1) A

{
k + sumToK(k - 1);

15

Practice, Practice, Practice:

Sum all values from [l to [4, e.g. B AERGIRE

sumToK

<<Missing Recursive action>>

16

Practice, Practice, Practice:

Sum all values from [l to [4, e.g. B AERGIRE

sumToK

(k <= 1) A

{
k + sumToK(k - 1);

17

Practice, Practice, Practice:

Return the number of times appears in a given String.

countChr
(str.length()

count =
(str.substring(", ').equals()) A
count =

count + <<Missing a Recursive call>>

countChr("ctcowcAt") -> 1

Practice, Practice, Practice:

Return the number of times appears in a given String.

countChr
(str.length() ==) {

count =
(str.substring(", ').equals()) A
count =

count + countChr(str.substring());

countChr("ctcowcAt") -> 1

Binary Search

e Used to search for a value (the target) in a sorted array.
o Keep dividing the array in half

e Compare the target with the value at the middle index in the
remaining array.

o If the target is less than the mdidle element, then we search the
target in the left half of the array (the elements less than the
middle)

o If the target is greater than the mdidle element, then we search the
target in the right half of the array (the elements greater than the

middle) 20

Binary Search

e returns the position of the middle element if we find the target
there, or

e returns -1 if we can't find the target.

21

Binary Search: Live Coding

22

Binary Search

binarySearch

(leftBound > rightBound) {

}
middleIdx = (leftBound + rightBound) / ;

String middleElem = A[middleIdx];
(middleElem.equals(target)) {
middleIdx;
(middleElem.compareTo(target) <) {
binarySearch(A, target, middleIdx + ', rightBound);

binarySearch(A, target, leftBound, middleIdx - ');

Writing Your Own Recursive Methods

Step 1: Write the base case.
e (A way toreturn avalue without recursing further.)
Step 2: Write the recursive case.

[t really is this simple, but the type of thinking that lets you
accomplish this will often take a while to learn.

24

Writing Your Own Recursive Methods
Tips:

e Make sure that your base case is reachable

o Your recursive calls should make the problem progressively
smaller, typically.

e Consider whether or not the problem is helped with a recursive
approach

o Fibonacci numbers are technically recursive, but the recursive
implementation is very bad...

25

