
Even More Exceptions, More JUnit

(All interleaved)

1

How To Do Good Testing

Unit Tests should test a single unit of code at a time.

Unit Tests should typically have one or few assertions per test

Otherwise, your test is probably testing more than one unit of
code!

Make sure your unit tests have inputs that test all possible outputs.

Black box view

Make sure your unit tests have inputs that test all possible paths
that your code can take

White box view
2

What kinds of test can you write?

Basic assertions:

assertEquals([message], expected, actual)

Check that two inputs are equal

assertTrue([message], expression)

Check that some boolean expression is true

assertNull([message], expression)

Check that some value is null

assertArrayEquals([message], expectedArr, actualArr)

Check if two arrays have the same elements
3

What kinds of test can you write?

Does my code return the right value?

@Test

public void testBadStringMissingCIT() {

 String input = "001591CIS777776312345";

boolean expected = false;

boolean actual = PartTwo.isValidProductKey(input);

 assertEquals(expected, actual);

}

(From the Exam autograder)

4

What kinds of test can you write?

Does my code return a value that has a certain property?

@Test

public void testRunExperiment100000Times() {

double threshold = 0.04332;

double error = Math.abs(result100000 - Math.PI);

 assertTrue(error < threshold);

}

(From the HW3 autograder)

5

What kinds of test can you write?

Does my code ever accidentally deal with a null value?

@Test

public void testAllCardsInDeckInitialized() {

 Deck d = new Deck();

while (!d.isEmpty()) {

 Card c = d.deal();

 assertNotNull(c);

 }

}

(From my HW4 testing. This is not a great test, BTW--way too many
asserts per test!)

6

What kinds of test can you write?

Timeout Assertions: It's not just important that your code is correct;
it should also run quickly.

import static java.time.Duration.ofMillis;

@Test

public void testCodeRunsQuickly() {

 String input = "Sorta long string for testing example";

 assertTimeout(ofMillis(3000), () -> {

 runExpensiveOperation(input);

 });

}

Passes when runExpensiveOperation finishes in under 3000ms. 7

What kinds of test can you write?

This test will let runExpensiveOperation go as long as it needs and tell
you how long it took. Could be a problem with infinite loops...

import static java.time.Duration.ofMillis;

@Test

public void testCodeRunsQuickly() {

 String input = "Sorta long string for testing example";

 assertTimeout(ofMillis(3000), () -> {

 runExpensiveOperation(input);

 });

}

8

What kinds of test can you write?

This test will let runExpensiveOperation go only for 3000ms and fail if
it's not finished. Less information provided, but more robust in case
of infinite loop.

import static java.time.Duration.ofMillis;

@Test

public void testCodeRunsQuickly() {

 String input = "Sorta long string for testing example";

 assertTimeoutPreemptively(ofMillis(3000), () -> {

 runExpensiveOperation(input);

 });

}

9

What kinds of test can you write?

Throwing Assertions: testing to make sure that your code throws
exceptions when you expect it to.

@Test

public void testCodeThrowsAnException() {

 Exception e = assertThrows(FileNotFoundException.class, () -> {

 FileInputStream fs = new FileInputStream("sdjflksjdlfksjdf.fssdf");

 });

}

10

What kinds of test can you write?

Once the exception is thrown, you can also test that it contains the
right message, too:

@Test

public void testCodeThrowsAnException() {

 Exception e = assertThrows(FileNotFoundException.class, () -> {

 FileInputStream fs = new FileInputStream("sdjdf.ff");

 });

 assertEquals("sdjdf.ff (No such file or directory)", e.getMessage());

}

11

Virtues of Black Box Testing

Black Box Testing is the process of writing tests just based on inputs
and outputs, not concerning yourself with how the unit of code is
written.

This lets you write tests before you write your code (TEST DRIVEN
DEVELOPMENT)

 CIT 594

Verifies that you actually know what your code is supposed to be
doing

12

Drawbacks of Black Box Testing

It's very hard to know when you're done!

How do you know when you've covered every possible output? Every
possible input? Is that ever even possible? (not really)

13

Alternative: Coverage-Based Testing

Once you've written your code, make sure you write enough tests so
that every line of your code actually gets tested.

Testing Coverage is the measure of how many lines of your program
are actually executed when running the tests you've written.

14

Example

public class Coverage {

public static boolean m(int p) {

if (p < 0) {

 p = 1;

return p > 1;

 }

return p == 1 || p == 9;

 }

public static boolean mm() {

return false;

 }

}

Borrowed from Cornell CIT 591/594 equivalent
15

One Test Case

import static org.junit.jupiter.api.Assertions.assertEquals;

import org.junit.jupiter.api.Test;

class CoverageTest {

@Test

void test() {

 assertEquals(false, Coverage.m(-1));

 }

}

One test is usually not enough, but with Eclipse Coverage Testing, we
get an idea of how lacking it is!

16

Coverage

17

Coverage

Green:

This line of code is executed and all paths branching from it were
started.

Yellow:

This line of code is executed at least once, but not all paths
branching from it were started.

Red:

This line of code was never reached, and not all paths branching
from it were started.

18

Activity: Cover this code!

public class Coverage {

public static boolean m(int p) {

if (p < 0) {

 p = 1;

return p > 1;

 }

return p == 1 || p == 9;

 }

public static boolean mm() {

return false;

 }

}

Write tests that will cover this program entirely.
19

Activity: Cover this code!

isValidProductKey (see calendar tab of course website)

20

Now: HashMaps

Common problem: how to lookup some value based on another value
(e.g. a student's grade based on their name)

Maps allow us to associate keys with values.

keys are what you use to loopup values.

not vice versa!

21

Maps at a High Level

I want to map State names (keys) to Populations (values).

So, perhaps:

CA --> 38332521

AZ --> 6626624

MA --> 6692824

The state name "CA" maps to a population of 38,332,521.“ “

22

Maps at a High Level

I want to map State names (keys) to Populations (values).

So, perhaps:

CA --> 38332521

AZ --> 6626624

MA --> 6692824

If a key is missing, there's no associated value.

The state name "PA" maps to ???.“ “

23

Maps at a High Level

I want to map State names (keys) to Populations (values).

So, perhaps:

CA --> 38332521

AZ --> 6626624

MA --> 6692824

CA --> 38349391

Repeating States doesn't make much sense.

The state name "CA" maps to ???“ “

24

Making a HashMap

HashMap<K, V> mapping = new HashMap<K, V>();

Creates a new variable called mapping that stores a HashMap<K, V> (a
mapping from keys of type K to values of type V). The initial value of
the variable is set to be a new empty HashMap<K, V> .

e.g.,

HashMap<String, Double> gradeMap = new HashMap<String, Double>();

25

Remember, No Primitive Types!

Integer , not int

Double , not double

Boolean , not boolean

Character , not char

26

Two Fundamental Operations of a HashMap

put(K key, V value) and get(K key)

put introduces a new mapping from key --> value

get returns the value that is mapped to the provided key

27

The Invariants of a HashMap

Keys are all unique!

Any HashMap can only associate one particular key with one value.

A missing key implicitly means that the key maps to the value null .

Careful!!

Keys are not stored in any particular order

ArrayLists have values set in a particular order, accessible by
indices.

No such ordering for a HashMap . (There is for a TreeMap ...)
28

Put and Get as Example

HashMap<String, Integer> statePopulation = new HashMap<String, Integer>();

// 2013 population data

statePopulation.put("CA", 38332521);

statePopulation.put("AZ", 6626624);

statePopulation.put("MA", 6692824);

System.out.printf("Population of Arizona in 2013 is %d.%n", statePopulation.get("AZ"));

Population of Arizona in 2013 is 6626624.

29

Replacing Keys

HashMap<String, Integer> statePopulation = new HashMap<String, Integer>();

statePopulation.put("CA", 38332521);

statePopulation.put("AZ", 6626624);

statePopulation.put("MA", 6692824);

System.out.printf("Population of Arizona in 2013 is %d.%n", statePopulation.get("AZ"));

statePopulation.put("AZ", 6871809);

System.out.printf("Population of Arizona in 2014 is %d.%n", statePopulation.get("AZ"));

Population of Arizona in 2013 is 6626624.
Population of Arizona in 2014 is 6871809.

30

Getting Keys That Aren't Present

HashMap<String, Integer> statePopulation = new HashMap<String, Integer>();

// 2013 population data

statePopulation.put("CA", 38332521);

statePopulation.put("AZ", 6626624);

statePopulation.put("MA", 6692824);

System.out.printf("Population of Pennsylvania in 2013 is %d.%n", statePopulation.get("PA"));

Population of PA in 2013 is null.

31

Getting Keys That Aren't Present

HashMap<String, Integer> statePopulation = new HashMap<String, Integer>();

// 2013 population data

statePopulation.put("CA", 38332521);

statePopulation.put("AZ", 6626624);

statePopulation.put("MA", 6692824);

int x = statePopulation.get("PA");

NullPointerException !

(What's the difference between this and the last example?)
32

Also Useful: containsKey()

mapping.containsKey(K key) returns true when key is present in
mapping as a key, and false otherwise.

HashMap<String, Integer> statePopulation = new HashMap<String, Integer>();

// 2013 population data

statePopulation.put("CA", 38332521);

statePopulation.put("AZ", 6626624);

statePopulation.put("MA", 6692824);

System.out.println(statePopulation.containsKey("PA"));

System.out.println(statePopulation.containsKey("CA"));

 false, true 33

Thinking with HashMaps

How could you use a HashMap to model recitation groups?

What would be the keys?

What would be the values?

Can you think of a couple ways to do it?

34

Idea 1

How could you use a HashMap to model recitation groups?

Have the keys be student names

Have the values be the group numbers.

Easy to answer the question "what recitation group is this student
in?"

Are there questions that are harder to answer?

35

Idea 2

How could you use a HashMap to model recitation groups?

Have the keys be group numbers

Have the values be an array or an ArrayList of students in that
recitation

Easy to answer the question "Who is in this particular recitation
group?"

Are there questions that are harder to answer?

36

Takeaway:

There are multiple ways to tse a HashMap to organize the same data.

Some implementations have different virtues compared to others.

37

Worked Example

Return a HashMap mapping each student to their highest assignment
score.

Find assignments.zip on the course website.

public static HashMap<String, Double> findBestScores(String[] filenames) {

return null;

}

public static void main(String[] args) {

 String[] filenames = {"hw1.txt", "hw2.txt", "hw3.txt"};

 HashMap<String, Double> output = findBestScores(filenames);

}

38

Solution

public static HashMap<String, Double> findBestScores(String[] filenames) throws IOException {

 HashMap<String, Double> mapping = new HashMap<String, Double>();

for (String filename : filenames) {

 FileInputStream gradeFile = new FileInputStream(filename);

 Scanner gradeScanner = new Scanner(gradeFile);

while (gradeScanner.hasNextLine()) {

 Scanner line = new Scanner(gradeScanner.nextLine());

 String key = line.next();

double newGrade = line.nextDouble();

if (!mapping.containsKey(key) || mapping.get(key) < newGrade) {

 mapping.put(key, newGrade);

 }

 }

 gradeScanner.close();

 }

return mapping;

}

39

Other Useful Methods

Signature Purpose

putIfAbsent(K
key, V value)

Only add the mapping from key to value if the
key isn't already in the mapping.

containsValue(V
value)

Returns true if there's a key that maps to value ;
false otherwise.

remove(K key) Removes the entry corresponding to this key

clear() Removes all entries

keySet() and
values()

Returns a set of keys or a collection of values,
correspondingly

40

Hashing

 The next few slides don't need to be memorized closely. This is just
some (hopefully interesting) background.

41

Hashing

Of course, we could implement something similar to a HashMap just
using an ArrayList.

How would we approach this?

42

Hashing

Of course, we could implement something similar to a HashMap just
using an ArrayList.

How would we approach this?

Maybe create a new class for the Entry (e.g. something with a field
for the String key and a field for the int value)

Put a bunch of those objects in an ArrayList and iterate over the
list to find/add things

43

Problem: Finding the value mapped to a key
this way takes a lot of looking.

Here's a basic approach to looking over the Mappings in an ArrayList,
iterating over them one at a time.

for (int i = 0; i < myMap.size(); i++) { // if a "hash map" were just an ArrayList

 Entry current = myMap.get(i);

if (current.getKey().equals("Harry")) {

return current.getValue();

 }

}

44

What's the value associated with key
"Harry"?

How many iterations of the for-loop do we go through if entryOne has
the key "Harry" ?

myMap = < entryOne, entryTwo, entryThree, entryFour, ... entry10000 >

for (int i = 0; i < myMap.size(); i++) { // if a "hash map" were just an ArrayList

 entry current = myMap.get(i);

if (current.getKey().equals("Harry")) {

return current.getValue();

 }

}
45

What's the value associated with key
"Harry"?

How many iterations of the for-loop do we go through if entry10000
has the key "Harry" ?

myMap = < entryOne, entryTwo, entryThree, entryFour, ... entry10000 >

for (int i = 0; i < myMap.size(); i++) { // if a "hash map" were just an ArrayList

 Mapping current = myMap.get(i);

if (current.getKey().equals("Harry")) {

return current.getValue();

 }

}
46

Linear Searching Has Linear Costs

Searching index by index (a linear search) in an ordered sequence like
an array or ArrayList requires more effort when...

There are more elements in the collection, and

The element that you're looking for is located towards the end

47

Linear Searching Has Linear Costs

Not really a problem now, but imagine if Facebook had to use this
strategy to find how many friends a user has

Way too many users

Devastating results if you're looking for a user at the end of the
list.

48

Hashing: almost magical

Imagine if, given a very big ArrayList of values, and some particular
key, you could ~instantly calculate the index where its value would
live.

Calculate the index where the value should live (~instant)

Ask for the value stored at that index from the ArrayList (~instant)

If the value is null, then you know the key doesn't have a value
mapped to it.

If the value is not null, then you know you have the value mapped
to the key.

49

Hashing: almost magical

Finding the last name as a value associated with a first name key:

values-> ["Fouh", "Yang", ..., "Smith", "Wu", ..., "Mammadov"];

(indices) 0 1 ... 2928 2929 ... 389293

key -> "Harry"

crystalBall(key) -> The value associated with key "Harry" would live at index 2928.

values.get(2928) -> "Smith"

 "Harry" maps to "Smith"

50

Not actually magic! (Obviously)

Carefully chosen functions called Hash Functions can (almost
uniquely) map a key to one index over a specified range.

These indices can be used to indicate where the corresponding value
should be stored in an underlying table.

Excuse me, can you tell me where to find the coffee?“ “

Yes, aisle three.“ “

51

Not actually magic! (Obviously)

More on Hashing in future courses here (excited for CIT 594?)

52

Sets

HashMaps are useful for asking questions about data associations.

What's this person's student ID?

How many students are in the group 8?

What's the population of this state?

Sometimes we don't need to worry about data association, only
membership.

53

Questions of Membership

Is John in class today?

Has this assignment been added to the "graded" group?

While iterating over this collection, have I seen this particular
element yet?

These are questions that can be answered by maintaining a Set of
elements that meet a certain criteria.

54

Motivating a Set

Imagine that we have a requirement that each student attend at least
one "Code Review" throughout the semester. A student can attend
more than one, but at least one is required for credit.

Idea:

Keep a Set of students

Whenever a student attends a code review, add them to the Set

At the end of the semester, for each student in the course, assign
them +10pts if they are in the set of students who have attended a
code review.

55

Motivating a Set

codeReviewAttendance <- {} // the empty set

// after code review 1:

codeReviewAttendance.add("Vivian")

codeReviewAttendance.add("Jintong")

print(codeReviewAttendance)-> {"Jintong", "Vivian"}

// after code review 2:

codeReviewAttendance.add("Vivian")

codeReviewAttendance.add("Dana")

print(codeReviewAttendance)-> {"Jintong", "Vivian", "Dana"}

56

HashSet

An unordered collection of elements that supports exceedingly quick
performance on the operations add , remove , contains , and size .

Any element can only be present once in a HashSet.

57

Making a HashSet

HashSet<E> set = new HashSet<E>();

Creates a new variable called set that stores a HashSet<K, E> (an
unordered collection of elements of type E). The initial value of the
variable is set to be a new empty HashSet<E> .

e.g.,

HashSet<String> attendance = new HashSet<String>();

58

Other Useful Methods

Signature Purpose

add(E e) Put e in the set

contains(E e)
Returns true if e is present in the Set, false
otherwise.

remove(Object
o)

Removes o from the Set.

size() Number of entries in the set

add and remove return true when the operation changes the set,
and false otherwise. 59

Set Practice:

Union

Given two sets, return a set containing all elements present in
either of the sets.

Intersection

Given two sets, return a set containing all elements present in both
sets.

60

