
Testing I/O Methods & JavaDocs

1

System.out and System.in are Streams

Streams are objects designed to send data to and from a source.

System.out is configured by default to be your console's output

System.in is configured by default to be your console's input

FileInputStream objects can be created to open a file for reading

FileOutputStream objects can be created to open a file for writing

2

Setting System.out and System.in

Let's venture over to System JavaDocs to get an idea.

Here we go!

3

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/System.html

Setting System.in

System.setIn(InputStream in) reassigns the "standard" input stream
to be in .

4

Replacing System.in with a file

InputStream file = new FileInputStream("my_file.txt");

System.setIn(file);

5

Replacing System.in with some particular
String

String data = "Some String that has the data you want";

InputStream stringData = new ByteArrayInputStream(data.getBytes());

System.setIn(stringData);

6

Why is this useful?

Imagine, for example, that I want to test some code that takes in a
sequence of user inputs. Each input indicates where a drawn card
should go on a board, and once we've received enough inputs, we'll
calculate a score.

public int playGame() {

 Scanner scnr = new Scanner(System.in);

while (emptySpaces()) {

 String choice = scnr.next(); // reads from System.in

 handleChoice(choice);

 }

return score();

}

7

Why is this useful?

A basic test case for this would look like the following: (pretend for
now that nothing is random!)

@Test

public void testScoringPlacingInOrder() {

 BlackjackSolitaire b = new BlackjackSolitaire();

int actual = playGame(); // the program will wait for you to respond over and over

int expected = 14;

 assertEquals(expected, actual);

}

This would take forever, even though it's a valid test!

8

Why is this useful?

Instead, try this:

@Test

public void testScoringPlacingInOrder() {

 String data = "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16";

 InputStream stringData = new ByteArrayInputStream(data.getBytes());

 System.setIn(stringData);

 BlackjackSolitaire b = new BlackjackSolitaire();

int actual = playGame(); // automatically reads from our String now

int expected = 14;

 assertEquals(expected, actual);

}

When we ask for user input, it's read from the Stream we made! 9

What if we wanted to go back to the original
System.in ?

Naively, System.setIn(System.in) ...

What's wrong with this?

10

What if we wanted to go back to the original
System.in ?

String data = "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16";

InputStream stringData = new ByteArrayInputStream(data.getBytes());

System.setIn(stringData);

// then, later:

System.setIn(System.in)

is, essentially, just:

System.in = somethingElse;

System.in = System.in; // this would never do anything ever!

11

What if we wanted to go back to the original
System.in ?

Best practice: save a reference to the original System.in , 'cuz we
don't really have a good way of getting it back.

InputStream original = System.in;

String data = "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16";

InputStream stringData = new ByteArrayInputStream(data.getBytes());

System.setIn(stringData);

// then, later:

System.setIn(original)

12

Exercise:

1. Write a class with a method public static double avgOfInputs()

1. The method should read an int from the console indicating how
many numbers it will read in.

2. The method should then read that many numbers, and then
compute and return the average.

2. Test your method manually by calling it and providing the input by
typing.

3. Swap computers with a partner (or send your code, or something)
and write three JUnit test cases manipulating System.in to avoid
retyping inputs and making testing automatic.

13

Another Improvement to JUnit Testing

In each test case, you will be resetting System.in , so:

1. You should be saving the original System.in in case you need it
again

2. If you are giving input Strings or files through your Streams , you
should be prepared to close them off after each test to avoid weird
bugs.

14

class AveragerTest {

static InputStream originalIn;

static final double DELTA = 1e-6;

@BeforeAll

static void setUpBeforeClass() throws Exception {

 originalIn = System.in;

 }

@AfterEach

void tearDown() throws Exception {

 System.in.close();

 System.setIn(originalIn);

 }

// Test cases go here, like usual

}

15

BeforeAll and AfterEach

A method annotated with @BeforeAll ...

gets run before any test case gets run

must be static void

A method annotated with @AfterEach ...

gets run after each test case finishes

must be void

16

Capturing Printed Output Directly

We'll replace System.out with a PrintStream .

The PrintStream has all the methods that System.out already had
for printing (println, print, printf)

All print calls will be stored in this Stream of data.

We can inspect the stream's contents directly with toString() .

17

Replacing System.out

OutputStream outputStream = new ByteArrayOutputStream();

PrintStream printStream = new PrintStream(outputStream);

System.setOut(printStream);

System.out.println("Hello!!!!");

Nothing appears on the console, all text is held in the PrintStream .

18

Inspecting the Replaced System.out

OutputStream outputStream = new ByteArrayOutputStream();

PrintStream printStream = new PrintStream(outputStream);

System.setOut(printStream);

System.out.println("Hello!!!!");

String printedContents = outputStream.toString();

19

Exercise:

1. Write a class with a method
public static void sortedChars(String s)

1. The method should take a String as input.

2. The method should create a set of characters in that String.

3. The method should repeatedly call Collections.min() to print
and remove the smallest remaining character in the set until
there are no remaining characters.

2. Write three JUnit test cases manipulating System.out to compare
the printed outputs against an expected value.
e.g. "harry" --> a h r y

20

