
Abstract Classes

1

Inheritance is a Powerful Tool

If we know what an object is, we know what we can expect it to do.

Any object that extends a Polygon can calculate its perimeter

Any GamePiece can determine its position, be it an Obstacle or a
Candy .

2

Superclasses Shouldn't Have to Be Concrete,
Though

It makes sense that we might want to instantiate a Polygon to
represent a real, concrete polygon of some irregular shape that's not
a Triangle or a Square .

It makes much less sense to instantiate a GamePiece in CandyCrush
that's not a Candy or an Obstacle .

3

Abstract Classes

An abstract class can be used to define a superclass that cannot itself
be instantiated.

Abstract classes are marked as abstract , e.g.
public abstract class GamePiece

Abstract classes do not have constructors and cannot be
instantiated.

Abstract classes can contain abstract methods

4

Abstract Methods

An abstract method is a signature without a body.

marked by writing a signature like so:
abstract returnType methodName(argType argName, argType

argName...);

any subclass that derives the abstract class containing this abstract
method must provide an implementation for the abstract method

Any class containing an abstract method has to itself be abstract.

5

Quick aside: protected

A field or method tagged as protected is accessible within the class
it's defined inside of, and also from any class within this package that
also derives from this class.

public to subclasses you personally write and private otherwise.

6

GamePiece, redux

public abstract class GamePiece {

protected Point position;

protected Image sprite;

public Point getPosition() {

return this.position;

 }

public void draw() {

 sprite.render(position);

 }

abstract Point moveTo(Point p);

}

Candy and Obstacle handle moveTo differently, so might as well make
them deal with it! 7

Animals, wild and domestic

public abstract class Animal {

protected String name;

protected int age;

abstract void printInfo();

public String getNameAndAge() {

return this.name + ", " + age + " years";

 }

}

8

Animals, wild and domestic

public class Domestic extends Animal {

private String owner;

public Domestic(String domesticName, int domesticAge, String domesticOwner) {

this.name = domesticName;

this.age = domesticAge;

this.owner = domesticOwner;

 }

public void printInfo() {

 String nameAndAge = this.getNameAndAge();

 System.out.println(nameAndAge);

 System.out.println("Owner: " + this.owner);

 }

} 9

Animals, wild and domestic

public class Wild extends Animal {

private String species;

public Wild(String wildName, int wildAge, String wildSpecies) {

this.name = wildName;

this.age = wildAge;

this.species = wildSpecies;

 }

public void printInfo() {

 String nameAndAge = this.getNameAndAge();

 System.out.println(nameAndAge);

 System.out.println("Species: " + this.species);

 }

} 10

Interfaces for Full Abstraction

Perhaps you want to define a superclass that has ONLY abstract
methods.

This is a fully abstract data type:

you'd know everything that it can do

you know knothing about how it works.

To do this, write public interface InterfaceName

11

Rules of Interfaces

Interfaces cannot have private methods

Interfaces can have private static final fields, i.e. constants

Interfaces do not need to tag each method signature as abstract

They are all understood to be abstract!

A class can implement multiple interfaces.

Remember that this different from extends

12

Example

public interface DrawableASCII {

public static final char defaultChar = '#';

public void drawASCII(char drawChar);

public void drawASCII();

}

13

Square

public class Square implements DrawableASCII {

private int sideLength;

public Square(int sideLength) {

this.sideLength = sideLength;

 }

@Override

public void drawASCII(char drawChar) {

// TO DO

 }

@Override

public void drawASCII() {

 drawASCII(defaultChar);

 }

}

14

Circle

public class Circle implements DrawableASCII {

private int radius;

public Circle(int radius) {

this.radius = radius;

 }

@Override

public void drawASCII(char drawChar) {

// TO DO

 }

}

15

Interfaces and Superclasses Define "is-a"
Relationships

Contrast this with fields, which indicate "have-a" relationships.

16

