
Inheritance & Polymorphism

1



Derived Classes

We'll often have classes that are very similar to each other, but with
some small additions or changes.

Following the principle of DRY, we'll need a way of efficiently
expressing a class that derives from another.

2



Example: Candy
Crush

To program this game, you'll
implement a grid of game
pieces.

Each piece has, at least, a
position and an image
representation.

3



What about the Candy ?

public class Candy {

private Point position;

private Image sprite;

private Color color;

public Point getPosition() {...}

public void draw() {...}

public Point moveTo(Point p) {...}

public void drop() {...}

public void clear() {...}

}

A Candy  game piece can be cleared, and will drop when space is
opened beneath it. 4



What about the Obstacle ?

public class Obstacle {

private Point position;

private Image sprite;

public Point getPosition() {...}

public void draw() {...}

public Point moveTo(Point p) {...}

public void grow() {...}

}

An Obstacle  game piece prevents other pieces from being moved into
the space, and they will also grow over time.

5



Too Much Overlap!

Candy  objects and Obstacle  objects are almost exactly the same,
except for a handful of small changes.

Idea:

Can we "factor out" the common fields and methods into a single
class?

If we have the commonalities in one class, we can find a way to
automatically import them into some specific classes

The specific individual classes can have their own additions, too

6



the GamePiece

public class GamePiece {

private Point position;

private Image sprite;

public Point getPosition() {...}

public void draw() {...}

public Point moveTo(Point p) {...}

}

These are the methods and fields that Candy  and Obstacle  both have.

7



Derived Classes (subclasses)

A derived class (subclass) is a class that is derived from another base
class (superclass).

Any class many serve as the superclass for another derived class.

A subclass inherits all properties of the base class, including member
variables (fields) and methods.

8



extends

class DerivedClass extends BaseClass { ... }

Now DerivedClass  has access to all public fields and methods
contained in BaseClass .

These can be referenced in the normal way

New methods and fields can still be added in the normal way

Derived methods can be modified by overriding the original
method signature.

9



Candy  as derived from GamePiece

public class Candy extends GamePiece{

private Color color;

public void drop() {...}

public void clear() {...}

}

position , sprite , getPosition() , draw() , and moveTo(Point p)  are
all included in Candy  now for free!

10



Using Candy

public class Tester {

public static void main(String[] args) {

        Candy c = new Candy(); // imagine we wrote a useful constructor

        Point cPosition = c.getPosition(); // valid!

        c.drop(); // valid!

        System.out.println(c.color); // doesn't work, why not?

        System.out.println(c.position); // doesn't work, why not?

    }

}

11



Overriding

public class Obstacle extends GamePiece{

@Override

public Point moveTo(Point p) {

return this.getPosition();

    }

public void grow() {...}

}

The user should be able to try to move any game piece, but if you try
to move an Obstacle , it should stay put.

12



Overriding

Because an Obstacle  extends the GamePiece , it must be the case that
we can call moveTo()  on an Obstacle .

It's OK, though, if we need a subclass to implement a required
method differently than the superclass.

13



More Rules on Inheritance

A subclass can serve as a superclass for another class.

class ProduceItem extends GenericItem {...}  and also 
class FruitItem extends ProduceItem {...}

FruitItem  gets everything from ProduceItem , which also
therefore gets everything from GenericItem .

A class can serve as a superclass for multiple derived classes

In addition to above, 
class FrozenFoodItem extends GenericItem {...}

zyBook Activity 10.1.5 is excellent for visualizing this.
14



Example

public class Polygon {

private ArrayList<Side> sides;

public Polygon(ArrayList<Side> sides) {

this.sides = sides;

    }

public Side getSide(int i) {

return sides.get(i);

    }

public double perimeter() {

double sum = 0.0;

for (Side side : sides) {

            sum += side.length();

        }

return sum;

    }

}

15



Example

public class Square extends Polygon {

@Override

public double perimeter() {

return 4 * getSide(0);

    }

public double area() {

return getSide(0) * getSide(0);

    }

}

16



Your Turn: Triangle

Write a Triangle  subclass of Polygon . Include a new method 
isEquilateral()  to return true  if all sides of the triangle are equal in

length.

   Remember, DRY!   

17



Example

public class Triangle extends Polygon {

public boolean isEquilateral() {

double sideOne = getSide(0).length();

double sideTwo = getSide(1).length();

double sideThree = getSide(2).length();

return sideOne == sideTwo && sideTwo == sideThree;

    }

}

18



Where Does It All Come From?

It turns out that every single class in Java is a (possibly distant)
subclass of the Object  class.

A sketch of Object :

public class Object {

public String toString() {...}

public boolean equals(Object other) {...}

}

19



Revealing a Minor Miracle

System.out.println()  is actually a miraculous method.

We've called System.out.println()  with ArrayLists , Strings , 
Scanners , and all sorts of wacky objects.

Does that mean someone wrote a public void println(ArrayList a)
and also a public void println(String s) ?

20



Revealing a Minor Miracle

It's all just:

public void println(Object o) {

    println(o.toString());

}

where public void println(String s)  is actually an interesting
implementation somewhere else.

21



Polymorphism

Polymorphism refers to determining which program behavior to
execute depending on data types.

compile-time polymorphism happens when the compiler
determines which of several identically-named methods to call
based on the method's arguments

Do we call add(int x, int y, int z)  or add(int x, int y)  if we
write add(3, 9) ?

runtime polymorphism happens when the compiler makes the
determination is made while the program is running

22



Runtime Polymorphism

public static void main(String[] args) {

    ArrayList<Polygon> shapesList = new ArrayList<>();

    Triangle t = new Triangle(3, 4, 5);

    Square s = new Square(5);

    Polygon octagon = new Polygon(8);

    shapesList.add(t);

    shapesList.add(s);

    shapesList.add(octagon);

}

23



Reference Conversion

Java is happy to turn a reference to a subclass into a reference to its
superclass without any fuss.

When appropriate, it's fine to treat a Triangle  as a Polygon  since 
Triangle extends Polygon .

24



What Happends to the Subclasses?

public class A {

public void print() {

        System.out.println("This is an A.");

    }

}

public class B extends A{

public void print() {

        System.out.println("This is a B.");

    }

}

public class C extends A{

public void print() {

        System.out.println("This is a C.");

    }

}
25



What Happends to the Subclasses?

A a1 = new A();

A a2 = new A();

B b1 = new B();

C c1 = new C();

ArrayList<A> objs = new ArrayList<>();

objs.add(a1);

objs.add(a2);

objs.add(b1);

objs.add(c1);

for (A obj : objs) {

    obj.print();

}

 This is an A. This is an A. This is a B. This is a C. 26



A Frightening Corollary

If an ArrayList<SuperClass>  can store objects of any type that's a
subclass of SuperClass ...

And if Object  is a superclass of all other classes...

27



A Frightening Corollary

ArrayList<Object> objs = new ArrayList<>();

objs.add("Hello");

objs.add(new Random());

objs.add(new Scanner(System.in));

for (Object obj : objs) {

    System.out.println(obj);

}

Hello

java.util.Random@6442b0a6

java.util.Scanner[delimiters=\p{javaWhitespace}+][position=0][match valid=false]....

28


