
File I/O + Exceptions

1

Agenda

System.in and System.out as streams

Strings as streams

File input

File output

2

Streams

Writing and reading text is an intricate process.

Fortunately, we have objects that do it for us.

3

Streams as Objects

Streams are special object types that can be constructed to provide
direct access for reading/writing data from/to a particular source.

Streams have certain methods that allow you to do this seamlessly.

4

How Seamless Is It Really?

System.out is actually a PrintStream object.

As in, System.out.println()

System.out is a reference to a pre-defined PrintStream that's set
up to put text on your console.

println() is the name for a bunch of methods of a PrintStream
object that writes data to Stream this data belongs to.

System.out.println() "Write some text to the Stream that shows
up on your console."

5

System.out is for writing, System.in is for reading.

System.in is actually a InputStream object. Specifically, it's a Stream
hooked up to the keyboard.

Stream objects are used to construct Scanner objects that can parse
data from the streams.

6

Strings Can Be Used As Streams, Too

Since Scanners can be built from Streams, and Strings can be
Streams, then we can scan over Strings !

7

Practice: Parsing Data From Strings

public static double averageScores(String s) {

 Scanner scnr = new Scanner(s).useDelimiter(",");

return 0.0;

}

Example input: "8,10,12,7,13" 10.0

Use hasNextInt() and nextInt()

8

Solution: Parsing Data From Strings

public static double averageScores(String s) {

 Scanner scnr = new Scanner(s).useDelimiter(",");

double sum = 0.0;

int numInts = 0;

while (scnr.hasNextInt()) {

 sum += scnr.nextInt();

 numInts++;

 }

return sum / numInts;

}

9

Strings As Streams Are Useful in Parsing Files

Files with specified delimiters are common ways of expressing data
(CSVs, TSVs)

We can read every row from a CSV fil as a String , and parse that row
using a Scanner built on that String .

10

Cooking Up Our Own Input Streams

We have a default input source (System.in) and a basic custom input
source (any String you can get your hands on)

Solution: construct a new FileInputStream by specifying the name of
the file that you want to read from.

FileInputStream fileByteStream = new FileInputStream("grades.csv");

 Don't forget to close your FileInputStream !

11

Opening Up A File Is Risky Business

FileInputStream fileByteStream = new FileInputStream("grades.csv");

What if "grades.csv" doesn't exist? What if it's being used by another
program and can't be opened right now?

What if we try to read from the file and it's not formatted as we
expect? What if I left the oven on?

(Temporary) Solution: tag the method you're writing with
throws IOException

12

Full Example:

import java.util.Scanner;

import java.io.FileInputStream;

import java.io.IOException;

public static void main (String[] args) throws IOException {

 FileInputStream fileByteStream = new FileInputStream("numFile.txt");

 Scanner scnr = new Scanner(fileByteStream);

/*

 * Use the Scanner to read from the file...

 */

 fileByteStream.close();

}

13

Worked Example: Calculate and Print
Student Grades

Average each student's grades to get their total score.
Each line of grades.txt looks like this (grades are doubles)

student_name hw1_grade hw2_grade hw3_grade

public static void printGrades(String gradeFile) throws IOException {

 FileInputStream fileByteStream = new FileInputStream(gradeFile);

 Scanner scnr = new Scanner(fileByteStream);

//...

}

14

Worked Example: Calculate and Print
Student Grades

public static void printGrades(String gradeFile) throws IOException {

 FileInputStream fileByteStream = new FileInputStream(gradeFile);

 Scanner scnr = new Scanner(fileByteStream);

while (scnr.hasNextLine()) {

 Scanner lineScanner = new Scanner(scnr.nextLine());

 String name = lineScanner.next();

double sum = 0.0;

while (lineScanner.hasNextDouble()) {

 sum += lineScanner.nextDouble();

 }

 System.out.printf("%-8s: %-4.1f%n", name, sum / 3);

 }

 scnr.close();

}

15

Why Print When You Can Write?

The process for writing to a file should be very familiar.

Set up a Stream

Set up a Writer using that Stream

Use the Writer like you know how--printing

16

Full Example:

import java.util.PrintWriter;

import java.io.FileOutputStream;

import java.io.IOException;

public static void main (String[] args) throws IOException {

 FileOutputStream outStream = new FileOutputStream("output.txt");

 PrintWriter outWriter = new PrintWriter(outStream);

 outWriter.println("Harry was here");

 outWriter.println(1);

 outWriter.close();

}

17

Some Extra Details on Output

Like before, FileOutputStream and PrintWriter objects can
encounter exceptions

Creating a new FileOutputStream creates a file with that name in
your directory--even if you don't write anything to that file!

PrintWriter overwrites the previous file contents by default.

18

Worked Example: Calculate and Publish
Student Grades

Average each student's grades to get their total score.
Write them all on their own lines in a new file.
Each output line of finalGrades.txt should like this

student_name : final_grade

public static void printGrades(String gradeFile) throws IOException {

 FileInputStream fileByteStream = new FileInputStream(gradeFile);

 Scanner scnr = new Scanner(fileByteStream);

//...

} 19

public static void printGrades(String gradeFile) throws IOException {

 FileInputStream fileByteStream = new FileInputStream(gradeFile);

 Scanner scnr = new Scanner(fileByteStream);

 FileOutputStream outputStream = new FileOutputStream("finalGrades.txt");

 PrintWriter outWriter = new PrintWriter(outputStream);

while (scnr.hasNextLine()) {

 Scanner lineScanner = new Scanner(scnr.nextLine());

 String name = lineScanner.next();

double sum = 0.0;

while (lineScanner.hasNextDouble()) {

 sum += lineScanner.nextDouble();

 }

 outWriter.printf("%-8s: %-4.1f%n", name, sum / 3);

 }

 scnr.close();

 outWriter.close();

}

20

What is this throws business?

This was news to me, but it turns out that you can actually make
mistakes when you're programming!

21

Exceptions

22

Exceptions

We've seen exceptions before:

ArrayIndexOutOfBoundsException when you ask for an index outside
of an Array

InputMismatchException when you try to use a Scanner to read an
int from something that doesn't represent an int

NullPointerException when you call a method from an object that
hasn't been properly initialized

23

Unchecked Exceptions

"You messed up."

These are the exceptions we've seen before. It's possible to write
code that compiles but doesn't behave correctly. These bugs are your
fault as a programmer.

24

Not everything is your fault, though

Checked Exceptions are those resulting from errors outside of your
control.

A file you're trying to read from just isn't there

The operating system refuses to help you close a file

The file ended while you were expecting there to be more to read

These have to be handled.

25

Handling Exceptions

Easy way: just don't!

Tag the method that could throw a checked exception with
throws <Exception-Name>

Let the method that called this method worry about. Don't say
we didn't warn ya!

Safer way: try/catch

Specify behavior in the case that specific exceptions are thrown.

(It is actually often better to take the easier route)

26

Try / Catch

Syntax for trying to run some code and providing a response in the
case that an Exception is thrown.

try {

// dangerous statement(s)

} catch (IOException e) {

// error handling statement(s)

} catch (NumberFormatException e) {

// error handling statement(s)

}

If an exception is thrown, run the code in the first catch block with a
matching exception. 27

Try / Catch / Finally

Code in finally will be run once the try block is entered, no matter
what.

PrintWriter out = new PrintWriter("file.txt");

try {

 writingMethod(out);

} catch (NumberFormatException e) {

 System.out.println("Can't do that!");

} finally {

 out.close()

// Make sure that out gets closed no matter what!!!

}

28

Throwing Exceptions

Sometimes you want to throw an exception yourself!

throw new Exception("message describing error");

e.g.

throw new IllegalStateException("You cannot accelerate if the car is in park");

throw new IllegalArgumentException("Can't deposit a negative value into your bank account");

throw new ArithmeticException("This field does not have a zero element");

29

Throwing Practice

Fix this program so that it throws an exception with a meaningful
message when you try to double the value at an invalid position in the
array.

public static void doubleElement(int i, int[] arr) {

 arr[i] *= 2;

}

30

Catching Practice

31

