
Solving Problems Using Multiple Classes

1

So far...

We know how to:

Use objects

Write our own objects with fields and methods

Make choices using conditionals

Repeat processes using iteration

Work with lots of data using arrays

All of this is to say: we can write complex programs. So, let's solve
complex problems.

2

Next Step

Future projects (and exam questions) will have us implement
systems that...

Manage lots of different data

Coordinate interactions between different entities

Respond to user interaction

This week, we'll get practice designing systems that let us do all of
this.

3

Today: CRC Modeling

There are many ways to codify how different entities of a project will
interact.

Common:

UML Diagrams (detailed, brittle, hard)

Story-driven modeling (intuitive, imprecise)

Class-responsibility-collaboration cards (flexible, easy to write)

4

Example Problem Statement

-- Our imaginary client

We're desgining a Learning Management System that will blend
features of PennInTouch and Canvas. Students should be able to
request enrollment in courses. When enrollment is approved, the
student should be able to submit work for the course they're
enrolled in and see the grades that they've received from that
course.

“

“

5

Solving the Problem

In order to implement a full LMS as requested, we'll need to manage
different objects that store data and interact together.

How do we design each of the classes for these objects, let alone
decide which ones we'll even need?

CRCs can help us accomplish this.

6

The Basics of CRC Modeling

Represent each class of a system as an index card. On each card,
write:

1. The class name

2. The responsibilities of that class

3. The collaborators that the class will need to accomplish its
responsibilities.

7

Example: Student Class in a Learning
Management System.

┌──┐
│Name: Student │
├───────────────────────────┬────────────────────────────┤
│Responsibilities │Collaborators │
├───────────────────────────┼────────────────────────────┤
│ │ │
│ Register for classes │ Course │
│ │ │
│ Submit work │ Registrar │
│ │ │
│ See Grades │ │
│ │ │
│ Personal ID Information │ │
└───────────────────────────┴────────────────────────────┘ 8

Classes

Classes represent the blueprints for how similar objects will behave.
(We already know this!)

In the Student example, we might have a student Dana and a student
Phillip. They'll be in different courses and get different grades;
nevertheless, they're both still students.

9

Responsibilites

Either a piece of information that a class tracks OR a task that a
class must be able to do.

In this case, a student has to:

know their unique ID and grades (i.e. information)

be able to register for classes and submit work (i.e. tasks)

10

Collaborators

A class might not have all the resources on its own to meet its
responsibilties. For example, a Student usually can't grade themself;
they need an instructor to report their grade. They'll need to check
their Course 's gradebook to do that.

Generally, class A collaborates with B if

A needs information from B to complete its responsibilities, or

A shares information with B so that B can fulfill its
responsibilites.

11

Procedure for CRC Modeling

While you're not satisfied:

1. Identify new classes

2. Find the responsibilities of these classes

3. Define the collaborators (based on the responsibilities)

4. Arrange your CRC cards so that closely related classes are near
each other.

5. Check: did the above steps reveal the need for more
responsibilities or classes? If so, start from the top!

12

Other tips

For the first pass, try to find three or four main classes.

Remember that you can always come back if you think something's
missing.

It can be helpful to think of example objects from these classes:
you are a Student , CIT 591 would be a Course .

Collaborations are broadly symmetric

e.g. Courses have Students , Students are in Courses .

You can decide how useful it is to stick strictly to this pattern.

13

Practicing CRC: Learning Management

Step 1: Find Classes

 ┌───────────────────────┐ ┌───────────────────────┐
 │ │ │ │
 │ Student │ │ Course │
 │ │ │ │
 └───────────────────────┘ └───────────────────────┘

 ┌───────────────────────┐
 │ │
 │ Registrar │
 │ │
 └───────────────────────┘

14

Practicing CRC: Learning Management

Step 2: Find Responsibilities

 ┌──────────────┐ ┌──────────────┐ ┌──────────────┐
 │ │ │ │ │ │
 │ Student │ │ Course │ │ Registrar │
 │ │ │ │ │ │
 │-Register for │ │-Maintain │ │-Manage class │
 │ classes │ │ rosters │ │ registration │
 │ │ │ │ │ │
 │-Submit work │ │-Accept work │ │-Assess │
 │ │ │ │ │ student │
 │-See grades │ │-Show grades │ │ standing │
 │ │ │ │ │ │
 └──────────────┘ └──────────────┘ └──────────────┘

15

Practicing CRC: Learning Management

Step 3: Define Collaborations

A student can't register for class without registrar approval.

A student's work must be submitted to a course, and the course
stores the grade.

A registrar needs to see which courses the student is registered for
to assess their standing.

16

Practicing CRC: Learning Management

Step 3: Define Collaborations

So,

Class Collaborators

Student Course, Registrar

Course Registrar, Student

Registrar Course, Student

17

Practicing CRC: Learning Management

Step 4 & 5: Arranging and Assessing

We have three classes, each of which collaborate extensively with
each other. Maybe with some extra detail, we can tease out this mess
a little better.

What else might we add?

18

Practicing CRC: Learning Management

Step 4 & 5: Arranging and Assessing

We have three classes, each of which collaborate extensively with
each other. Maybe with some extra detail, we can tease out this mess
a little better.

What else might we add?

Gradebook, Roster, Schedule

19

Practicing CRC: Learning Management

Step 1: Finding Classes (again)

Maybe we should create entities for the storage of different pieces of
data to better specify interactions!

For example: Gradebook , Roster , Schedule

20

Practicing CRC: Learning Management

Step 2: Finding Responsibilities (again)

 ┌──────────────┐ ┌──────────────┐ ┌──────────────┐
 │ │ │ │ │ │
 │ Gradebook │ │ Roster │ │ Schedule │
 │ │ │ │ │ │
 │ │ │ │ │ │
 │-Store grades │ │-Store │ │-Add a new │
 │ │ │ enrolled │ │ course │
 │-Show grades │ │ Students │ │ │
 │ │ │ │ │-Show │
 │ │ │-Show students│ │ registered │
 │ │ │ │ │ course times │
 └──────────────┘ └──────────────┘ └──────────────┘ 21

Practicing CRC: Learning Management

Step 3: Redefine Collaborations

Class Collaborators

Student Gradebook, Roster, Schedule, Registrar

Course Registrar, Roster, Gradebook

Registrar Roster, Student, Schedule, Gradebook

22

Practicing CRC: Learning Management

Step 4: Asssessing our new creations

 ┌──────────────┐
 │ Schedule │
┌─────────┼───┐ │
│ │ │ │ ┌──────────────┐
│ └───┼──────────┘ │ │
│ Student │ │ Gradebook │
└─────────────┘ ┌────────┼────────┐ │
 │ └────────┼─────┘
┌─────────────┐ │ Course │
│ │ ┌──────┼───────┐ │
│ Registrar │ │ └───────┼─────────┘
│ │ │ Roster │
└─────────────┘ │ │
 └──────────────┘

23

Last Thoughts

Different people might come up with different designs!

There is not always a single best answer, although some will be
easier to program than others.

Generally better if you can think of the CRC Model as a set of
separate-but-related clusters

Practice makes perfect!

Remember that you can always iterate again if you're not satisfied.

24

Let's Practice

You're writing software for an online book retailer like Bookshop.
The site should allow customers to search an online inventory for
a book they're interested in. The search should return a list of
books from a database that match the search parameters. The
user can then select whichever book they'd like to purchase. The
book page should show local bookstores where the book is
available first, and then if no copies are found locally, the book's
page should show delivery options from a central warehouse. The
user should be able to purchase the book and pick it up locally or
get it shipped, depending on availability.

“

“

25

https://bookshop.org/

Google Doc Link

Here's where we'll put our work together.

26

https://docs.google.com/document/d/1_e9iEGfSmVPx_zzDV8hhIlx3kr7imoPviKqMlt5MC7E/edit?usp=sharing

