
Arrays

Our first collections.

1

Overview of Arrays (7.1)

2

What Does an Array Do?

Up until now: variables store a single data item (e.g. 59 or "Hello")

Now: arrays are special variables that store a list of data items under
a single name.

Each of the data items in the array is called an element

|-------array--------|

[4, 5, 9, 10, -20, 32]

 one element

3

Arrays Have Indices

Since arrays are collections of data, we need some way of accessing
the individual pieces of data inside the array.

Each element's location number is called the index.
If an array has n elements, then the indices of the array range from
0 to n-1

ARRAY : [39.02, 902.094, 94.2, -29.3]

INDICES: 0 1 2 3

4

Array Elements Can Be Accessed & Set

grades <-- [94, 89, 77, 100, 88]

Accessing the third element of the array: grades[2]

Assigning a new value to the first element: grades[0] = 98

Activities 7.1.3 & 7.1.4 in the book give excellent practice on these
fundamentals!

5

Practice with Indices

I have an array with 10 elements called studentNames ...

1. How can I assign the first element in the list to be "Han" ?

2. What are the valid indices for elements in studentNames ?

3. How can I set the last element to be the same as the first element?

6

Practice with Indices

Answers

1. studentNames[0] = "Han"; ?

2. 0 through 9

3. studentNames[9] = studentNames[0];

7

Array Syntax in Java

8

Declaring & Allocating a New Array

dataType[] arrayName = new dataType[numElements];

This tells Java to declare a new variable called arrayName . This
variable has type dataType[] , which reads aloud like "data type
array".

The initial value of arrayName is set to be a new array of type
dataType[] with a length of numElements .

e.g. int[] officeHourAttendance = new int[5];

9

More Rules about Indices

Indexing into an array is an expression

arr[1] works

arr[i] works

arr[i * 3 - j + 2] works

The type of the index must be int

arr["Harry"] does not work!

10

Exercise: Our First Array

Write a program that declares an array that will store doubles named
homeworkScores . The array should have a length of 4 .

The array stores the average homework scores on the first 4
homeworks for a class. The average for HW1 was 89.3 , for HW2 was
99.0 , for HW3 was 77.8 , and for HW4 was 82.84 . Store these

values in the correct order in the array homeworkScores .

11

Solution: Our First Array

public class FirstArray {

public static void main(String[] args) {

double[] homeworkScores = new double[4];

 homeworkScores[0] = 89.3;

 homeworkScores[1] = 99.0;

 homeworkScores[2] = 77.8;

 homeworkScores[3] = 82.84;

 }

}

12

Printing Arrays

More complicated than we might hope...

public class FirstArray {

public static void main(String[] args) {

double[] homeworkScores = new double[4];

 homeworkScores[0] = 89.3;

 homeworkScores[1] = 99.0;

 homeworkScores[2] = 77.8;

 homeworkScores[3] = 82.84;

 System.out.println(homeworkScores);

 }

}

 [D@65e579dc 13

Printing Arrays

We can still print the individual elements of the array.

public class FirstArray {

public static void main(String[] args) {

double[] homeworkScores = new double[4];

 homeworkScores[0] = 89.3;

 homeworkScores[1] = 99.0;

 homeworkScores[2] = 77.8;

 homeworkScores[3] = 82.84;

 System.out.println(homeworkScores[1]);

 }

}

 99.0 14

Loops and Arrays

We can use for loops to print out our arrays!

public class FirstArray {

public static void main(String[] args) {

double[] homeworkScores = new double[4];

// homeworkScores elements set as before...

for (int i = 0; i < homeworkScores.length; i++) {

 System.out.print(homeworkScores[i] + " ");

 }

 }

}

 89.3 99.0 77.8 82.84 15

Loops & Arrays

All arrays have a field length that stores how many elements are
inside.

String[] names = new String[17];

System.out.println(names.length);

 17

To loop over every index in an array, start from 0 and increment until
the last valid index, arr.length - 1 .

for (int i = 0; i < arr.length; i++) {...} 16

Check-in

int NUM_STUDENTS = 55;

int NUM_TAS = 5;

String[] pennkeys = new String[NUM_STUDENTS + NUM_TAS];

for (int i = 0; i < pennkeys.length; i++) {

 System.out.println("Enter Student/TA PennKey:");

 pennkeys[i] = scnr.next();

}

1. How many iterations does this for loop run for?

2. What is the value of pennkeys.length ?

3. How could I change the loop so that I only ask for 55 PennKeys?

17

Check-in

int NUM_STUDENTS = 55;

int NUM_TAS = 5;

String[] pennkeys = new String[NUM_STUDENTS + NUM_TAS];

for (int i = 0; i < pennkeys.length; i++) {

 System.out.println("Enter Student/TA PennKey:");

 pennkeys[i] = scnr.next();

}

1. 60

2. 60

3. for (int i = 5; i < pennkeys.length; i++) (and others)

18

Alternative Array Initialization

Only at the same time that you declare the array variable, you can
write out the elements of the array manually:

int[] newArray = {5, 7, 11};

The elements are automatically set

newArray[0] = 5, newArray[1] = 7, newArray[2] = 11

The length of the array is automatically interpreted

Don't need to provide that the length is 3

newArray.length == 3 automatically
19

Exercise: Printing in Reverse

Can you write a loop that prints out the elements of an array in
reverse? Think carefully about loop variable! Where should it start?
How should it be updated? When should it stop?

int[] toPrint = {1, 2, 3, 4, 5};

// your code here

// Should print out 5 4 3 2 1

20

Solution 1: Printing in Reverse

int[] toPrint = {1, 2, 3, 4, 5};

for (int i = toPrint.length - 1; i >= 0; i--) {

 System.out.println(toPrint[i]);

}

Iterate backwards from toPrint.length - 1 down to (and including)
0 , decrementing i by 1 every iteration.

21

Solution 2: Printing in Reverse

int[] toPrint = {1, 2, 3, 4, 5};

for (int i = 0; i < toPrint.length; i++) {

 System.out.println(toPrint[toPrint.length - (i + 1)]);

}

Iterate forwards the normal way, but access the indices using the
formula toPrint.length - (i + 1) . Why does this work?

22

Bad Solution 1: Printing in Reverse

int[] toPrint = {1, 2, 3, 4, 5};

for (int i = toPrint.length - 1; i > 0; i--) {

 System.out.println(toPrint[i]);

}

What's wrong?

23

Bad Solution 1: Printing in Reverse

int[] toPrint = {1, 2, 3, 4, 5};

for (int i = toPrint.length - 1; i > 0; i--) {

 System.out.println(toPrint[i]);

}

What's wrong? We never print the first element of the array since we
stop before i = 0

24

Bad Solution 2: Printing in Reverse

int[] toPrint = {1, 2, 3, 4, 5};

for (int i = 0; i < toPrint.length; i++) {

 System.out.println(toPrint[toPrint.length - i]);

}

What's wrong?

25

Bad Solution 2: Printing in Reverse

int[] toPrint = {1, 2, 3, 4, 5};

for (int i = 0; i < toPrint.length; i++) {

 System.out.println(toPrint[toPrint.length - i]);

}

What's wrong? We try to access toPrint[toPrint.length - 0] in the
first iteration, which is not a valid index. Only 0 through
toPrint.length - 1 are valid.

26

Live Coding: Finding the Biggest
Element in an Array

27

Biggest Element Solution

public static void main(String[] args) {

 Scanner scnr = new Scanner(System.in);

int NUM_INPUTS = 5;

double[] inputs = new double[NUM_INPUTS];

for (int i = 0; i < inputs.length; i++) {

 inputs[i] = scnr.nextDouble();

 }

double biggestSoFar = inputs[0];

for (int i = 0; i < inputs.length; i++) {

if (inputs[i] > biggestSoFar) {

 biggestSoFar = inputs[i];

 }

 }

 System.out.println("Biggest element: " + biggestSoFar);

}
28

Exercise: Smallest Element

public static void main(String[] args) {

 Scanner scnr = new Scanner(System.in);

int NUM_INPUTS = 5;

double[] inputs = new double[NUM_INPUTS];

for (int i = 0; i < inputs.length; i++) {

 inputs[i] = scnr.nextDouble();

 }

// YOUR SOLUTION HERE

 System.out.println("Biggest element: " + biggestSoFar);

}

29

Solution: Smallest Element

public static void main(String[] args) {

 Scanner scnr = new Scanner(System.in);

int NUM_INPUTS = 5;

double[] inputs = new double[NUM_INPUTS];

for (int i = 0; i < inputs.length; i++) {

 inputs[i] = scnr.nextDouble();

 }

double smallestSoFar = inputs[0];

for (int i = 0; i < inputs.length; i++) {

if (inputs[i] < smallestSoFar) {

 smallestSoFar = inputs[i];

 }

 }

 System.out.println("Smallest element: " + smallestSoFar);

} 30

Exercise: CIT 591 Grade Calculator

Prompt the user for for their homework score, their average exam
score, their final project score, and their attendance score. Store
these values in an array, and then use that array to calculate their
grade in the class. (~5 minutes to plan, then we'll code together.)

Component Weight

HW 60%

Exam 20%

Final Project 10%

Attendance 10% 31

Representing Complex Data with Multiple
Arrays

Representing a restaurant's menu items.

String[] itemNames = {"Chicken", "Falafel", "Lamb", "Fish"};

int[] itemPrices = {6, 5, 7, 6};

for (int i = 0; i < itemNames.length; i++) {

 System.out.println(itemNames[i] + ": $" + itemPrices[i]);

}

32

Representing Complex Data with Multiple
Arrays

Better still: MenuItem class to fill a single array

public class MenuItem {

private String name;

private int price;

// constructor, getters, etc.

}

33

Representing Complex Data with Multiple
Arrays

Better still: MenuItem class to fill a single array

MenuItem[] menu = new MenuItem[4];

menu[0] = new MenuItem("Chicken", 6);

menu[1] = new MenuItem("Falafel", 5);

menu[2] = new MenuItem("Lamb", 7);

menu[3] = new MenuItem("Fish", 6);

for (int i = 0; i < menu.length; i++) {

 MenuItem curr = menu[i]

 System.out.println(curr.getName() + ": $" + curr.getPrice());

}

34

Fundamental Rules of Arrays

Once created, an array object's size cannot change

Copying an array into another variable does not create a new array

int[] x = {3, 4, 5};

int[] y = x;

x[1] = 17;

System.out.println(y[1]); // --> Prints 17!!!

In order to duplicate an array, you need to initialize an entirely new
array of the same size.

35

Copying an Array

int[] x = {3, 4, 5};

int[] y = new int[x.length]; // init new array of the same size

for (int i = 0; i < x.length; i++) {

 y[i] = x[i]; // copy each element individually

}

x[1] = 10;

y[1] = -10;

System.out.println(x[1]); // --> prints 10;

System.out.println(y[1]); // --> prints -10

36

Exercise: Reversed Copy

Write a program that copies the values of an array into another new
array, but in reverse!

e.g. {4, 3, 6} -> {6, 3, 4}

37

Solution: Reversed Copy

Write a program that copies the values of an array into another new
array, but in reverse!

int[] x = {3, 4, 5};

int[] reversed = new int[x.length]; // init new array of the same size

for (int i = 0; i < x.length; i++) {

 reversed[reversed.length - i - 1] = x[i]; // copy each element individually

}

Put x[0] into reversed[2] , x[1] into reversed[1] , and x[2] into
reversed[0]

38

Swapping

Swapping array elements is a little more complicated than it might
seem.

What happens here?

String[] names = {"Harry", "Adrian", "Vivian"};

names[0] = names[2];

names[2] = names[0];

39

Swapping

Swapping array elements is a little more complicated than it might
seem.

What happens here?

String[] names = {"Harry", "Adrian", "Vivian"};

names[0] = names[2];

names[2] = names[0];

names becomes {"Vivian", "Adrian", "Vivian"} since "Harry" gets
overwritten by "Vivian" .

40

Swapping

Swapping correctly:

String[] names = {"Harry", "Adrian", "Vivian"};

String temp = names[0]; // temp is "Harry", this doesn't change with names

names[0] = names[2]; // We get {"Vivian", "Adrian", "Vivian"}

names[2] = temp; // We get {"Vivian", "Adrian", "Harry"}

41

Strings are like Arrays of Characters

If we have a String s ...

s.length() returns the length of the string.

Note the parentheses at the end!

s.charAt(int idx) returns the char (a single character) at index
idx in the string.

String indexing works exactly like array indexing

the first character lives at index 0 , the last at s.length() - 1

42

Example: Checking Title Case

Does the String start with an uppercase letter and then have only
lowercase letters?

public boolean isTitleCase(String str) {

// check if the string is empty to start (return true)

// check if the first char is not uppercase (return false)

// check if any following char is not lowercase letter (return false)

// if all other conditions aren't met, then return true

}

43

Example: Checking Title Case

public boolean isTitleCase(String str) {

if (str.length() == 0) {

return true;

 }

if (str.charAt(0) <= 'A' || str.charAt(0) >= 'Z') {

return false;

 }

for (int i = 1; i < str.length(); i++) {

char curr = str.charAt(i);

if (curr <= 'a' || curr >= 'z') {

return false;

 }

 }

return true;

}
44

