Looping

Examples of While Loops & For Loops

What's a Loop?

"A loop is a program construct that repeatedly executes the loop's
statements (known as the loop body)" -- 6.1

e Do the above while the loop's expression is true

e When the expression is false, skip the loop.

Summing a bunch of numbers

cumulativeSum <-- 0;
while there are numbers remaining...

add the next number to the cumulative sum;
move on to the next number;

Summing a bunch of numbers

cumulativeSum <-- 0;

while there are numbers remaining...
add the next number to the cumulative sum;
move on to the next number;

cumulativeSum: 9
numbers: [9, 1, 5, 17]
4+

Summing a bunch of numbers

cumulativeSum <-- 0;

while there are numbers remaining...
add the next number to the cumulative sum;
move on to the next number;

cumulativeSum: 10
numbers: [9, 1, 5, 17]
4+

Summing a bunch of numbers

cumulativeSum <-- 0;

while there are numbers remaining...
add the next number to the cumulative sum;
move on to the next number;

cumulativeSum: 15
numbers: [9, 1, 5, 17]
4+

Summing a bunch of numbers

cumulativeSum <-- 0;

while there are numbers remaining...
add the next number to the cumulative sum;
move on to the next number;

cumulativeSum: 32
numbers: [9, 1, 5, 17]
4+

Summing a bunch of numbers

cumulativeSum <-- 0;

while there are numbers remaining...
add the next number to the cumulative sum;
move on to the next number;

cumulativeSum: 32
numbers: [9, 1, 5, 17]

& b B

Activity: Averaging a bunch of numbers

cumulativeSum <-- 0;
?2?2?777777 <-- 0 // what other value should we track?
while there are numbers remaining...

add the next number to the cumulative sum;

move on to the next number;

Solution: Averaging a bunch of numbers

cumulativeSum <-- 0;
numbersSeen <-- 0 // need to count how many data points we have
while there are numbers remaining...

add the next number to the cumulative sum;

increment numbersSeen;

move on to the next number;

print (cumulativeSum / numbersSeen)

cumulativeSum: ©
numbersSeen: 0
numbers: [9, 1, 5, 17]

10

Solution: Averaging a bunch of numbers

cumulativeSum <-- 0;
numbersSeen <-- 0 // need to count how many data points we have
while there are numbers remaining...
add the next number to the cumulative sum;
increment numbersSeen;
move on to the next number;
print (cumulativeSum / numbersSeen)

cumulativeSum: 9

numbersSeen: 1

numbers: [9, 1, 5, 17]
1+

11

Solution: Averaging a bunch of numbers

cumulativeSum <-- 0;
numbersSeen <-- 0 // need to count how many data points we have
while there are numbers remaining...
add the next number to the cumulative sum;
increment numbersSeen;
move on to the next number;
print (cumulativeSum / numbersSeen)

cumulativeSum: 10

numbersSeen: 2

numbers: [9, 1, 5, 17]
4+

12

Solution: Averaging a bunch of numbers

cumulativeSum <-- 0;
numbersSeen <-- 0 // need to count how many data points we have
while there are numbers remaining...
add the next number to the cumulative sum;
increment numbersSeen;
move on to the next number;
print (cumulativeSum / numbersSeen)

cumulativeSum: 15

numbersSeen: 3

numbers: [9, 1, 5, 17]
4+

13

Solution: Averaging a bunch of numbers

cumulativeSum <-- 0;
numbersSeen <-- 0 // need to count how many data points we have
while there are numbers remaining...
add the next number to the cumulative sum;
increment numbersSeen;
move on to the next number;
print (cumulativeSum / numbersSeen)

cumulativeSum: 32

numbersSeen: 4

numbers: [9, 1, 5, 17]
4+

14

Solution: Averaging a bunch of numbers

cumulativeSum <-- 9;
numbersSeen <-- 0 // need to count how many data points we have
while there are numbers remaining...
add the next number to the cumulative sum;
increment numbersSeen;
move on to the next number;
print (cumulativeSum / numbersSeen)

cumulativeSum: 32
numbersSeen: 4
numbers: [9, 1, 5, 17]

4+

BB B B 5B

While Loops (6.2)

16

Definition:

A while loop is a program construct that repeatedly executes a list of
sub-statements (known as the loop body) while the loop's expression

evaluates to true.

e Each execution of the loop body is called an iteration.
e Once entering the loop body, execution continues to
the body's end, even if the expression would become

false midway through.

17

Syntax

while (expression) { // Loop expression
// Loop body: Executes if expression evaluated to true

// After body, execution jumps back to the "while"”

}

// Statements that execute after the expression evaluates to false

18

Worked Example: CountUp.java

e Read user input using a Scanner as an int
e Print out every number [] B3 that input; then, print

public class CountUp {
public static void main {
// read user input
// create variable to track progress towards upper 1imit

// boolean expression that's true while we have work to do
while () {

// print the current number

// update our control variable

}
// Afterwards, print "all done!”

} 19

Solution: CountUp.java

import java.util.Scanner;

public class CountUp {
public static void main {

Scanner scnr = new Scanner(System.in);

int upperLimit = scnr.nextInt();

int currentInt = = ;

while (currentInt <= 0) {
System.out.println(currentInt);
currentInt++;

b
System.out.println(

Writing Expressions for While Loops

while (____) {

// do something
}

Iterate while... Solution

X is greater than or equal to O

cis not equal to

21

Writing Expressions for While Loops

while (____) {

// do something
}

Iterate while... Solution

X is greater than or equal to O | FEEEN

cis not equal to

lc.equals("stop")

Common Mistakes: Wrong Loop Expression

Remember that the loop expression tells when the loop should
iterate, not when it should stop!

int x =)
while (x < 10) {
System.out.println(x);

while (x >= 10) {
System.out.println(x);
X -=

Common Mistakes: Looping Infinitely

It should always be possible for our loop expression to evaluate to
at some point.

// What's the problem here?

Scanner scnr = new Scanner(System.in);
Gradebook gb = new Gradebook(

String pennkey = scnr.next();

while (!pennkey.equals())
int grade = gb.checkGrade(pennkey) ;

System.out.println(pennkey +

24

Common Mistakes: Looping Infinitely

It should always be possible for our loop expression to evaluate to
at some point.

// What's the problem here?

Scanner scnr = new Scanner(System.in);
Gradebook gb = new Gradebook(

String pennkey = scnr.next();

while (!pennkey.equals()) |
int grade = gb.checkGrade(pennkey) ;
System.out.println(pennkey + + grade);
pennkey = scnr.next(); // this was missing!

25

Common Mistakes: Looping Infinitely

Even when you update the loop control variable, you can get subtle
errors...

// Get userVal from input

while (userVal !=) {

// Put userVal to output
// userVal = userVal - 2;

}

What happens when we start at [J?

26

Common Mistakes: Looping Infinitely

Even when you update the loop control variable, you can get subtle
errors...

// Get userVal from input

while (userVal !=) {

// Put userVal to output
// userVal = userVal - 2;

}

What happens when we start at [J?

6—>4—>2—>0

27

Common Mistakes: Looping Infinitely

Even when you update the loop control variable, you can get subtle
errors...

// Get userVal from input

while (userVal !=) {

// Put userVal to output
// userVal = userVal - 2;

}

What happens when we start at E]?

28

Common Mistakes: Looping Infinitely

Even when you update the loop control variable, you can get subtle
errors...

// Get userVal from input

while (userVal !=) {

// Put userVal to output
// userVal = userVal - 2;

What happens when we start at E]?

29

Try Some Examples!

What's printed?

while (x > 08) {

System.out.print(x +)
X = X -

}

System.out.print(

30

Try Some Examples!

What's printed?

while (x != 3) {

System.out.print(x +
X =X /

}

31

Worked Example: ReverseDigits.java

We'll use iteration, modulo, and division to print all the digits of an
integer (useful for homework!)

32

For Loops (6.4)

33

Definition:

A for loop is a loop with three parts at the top that makes it easy to
iterate a specific number of times. The parts are:

e Loop variable initialization
e Loop expression
e Loop variable update

Note that these parts are all actually present in a while loop already.

34

Coming from While Loops

int 1 = 0;

while (i < 5) {
// loop body
i=3i+1;

for (int i =
// loop body

}

35

Exercise: What gets printed?

for (int 1 = 0; 1 < 6; i++) {

System.out.println(i);

}

36

Exercise: What gets printed?

for (int i = 0; i < 6; i++) {
System.out.println(i);

}

37

Exercise: How do we get 20 iterations?

38

Exercise: How do we get 20 iterations?

39

Worked Example: Interest.java

For a given initial balance and interest rate, write a program that
calculates what the balance will be after ten years.

double initialSavings ;
double interestRate = /7 5%

double currentSavings ??? // what should this start as?

// define a for loop that runs 16 times
for (?2?2?272; 2?2272, 72?2?27) {
// update the current savings based on the interest rate
// 1.e. add the interest on the current amount
// TO the current amount.
}
System.out.print(initialSavings +
System.out.println(currentSavings +

Worked Example: Interest.java

For a given initial balance and interest rate, write a program that
calculates what the balance will be after ten years.

double initialSavings ;
double interestRate = ; // 5%
double currentSavings initialSavings;

// define a for loop that runs 76 times

for (int 1 = 0; i < »oi++) |
currentSavings += currentSavings * interestRate;

}

System.out.print(initialSavings +
System.out.println(currentSavings +

41

FOR vs. WHILE

loop when to use

for number of iterations is known (i.e. some)

num. iterations unknown, like looping until user inputs

while 'S TOP"

Challenge Example: BiggestOfN.java

Print the largest value in a list of integers. Assume the first integer
input is the number of integers to expect.

49 -10.8 1]
X O
B £3 77

43

