
Looping

Examples of While Loops & For Loops

1

What's a Loop?

"A loop is a program construct that repeatedly executes the loop's
statements (known as the loop body)" -- 6.1

Do the above while the loop's expression is true

When the expression is false, skip the loop.

2

Summing a bunch of numbers

cumulativeSum <-- 0;

while there are numbers remaining...

 add the next number to the cumulative sum;

 move on to the next number;

3

Summing a bunch of numbers

cumulativeSum <-- 0;

while there are numbers remaining...

 add the next number to the cumulative sum;

 move on to the next number;

cumulativeSum: 9

numbers: [9, 1, 5, 17]

4

Summing a bunch of numbers

cumulativeSum <-- 0;

while there are numbers remaining...

 add the next number to the cumulative sum;

 move on to the next number;

cumulativeSum: 10

numbers: [9, 1, 5, 17]

5

Summing a bunch of numbers

cumulativeSum <-- 0;

while there are numbers remaining...

 add the next number to the cumulative sum;

 move on to the next number;

cumulativeSum: 15

numbers: [9, 1, 5, 17]

6

Summing a bunch of numbers

cumulativeSum <-- 0;

while there are numbers remaining...

 add the next number to the cumulative sum;

 move on to the next number;

cumulativeSum: 32

numbers: [9, 1, 5, 17]

7

Summing a bunch of numbers

cumulativeSum <-- 0;

while there are numbers remaining...

 add the next number to the cumulative sum;

 move on to the next number;

cumulativeSum: 32

numbers: [9, 1, 5, 17]

8

Activity: Averaging a bunch of numbers

cumulativeSum <-- 0;

???????? <-- 0 // what other value should we track?

while there are numbers remaining...

 add the next number to the cumulative sum;

 ??????; // we'll need to update our other value, too.

 move on to the next number;

9

Solution: Averaging a bunch of numbers

cumulativeSum <-- 0;

numbersSeen <-- 0 // need to count how many data points we have

while there are numbers remaining...

 add the next number to the cumulative sum;

 increment numbersSeen;

 move on to the next number;

print (cumulativeSum / numbersSeen)

cumulativeSum: 0

numbersSeen: 0

numbers: [9, 1, 5, 17]

10

Solution: Averaging a bunch of numbers

cumulativeSum <-- 0;

numbersSeen <-- 0 // need to count how many data points we have

while there are numbers remaining...

 add the next number to the cumulative sum;

 increment numbersSeen;

 move on to the next number;

print (cumulativeSum / numbersSeen)

cumulativeSum: 9

numbersSeen: 1

numbers: [9, 1, 5, 17]

11

Solution: Averaging a bunch of numbers

cumulativeSum <-- 0;

numbersSeen <-- 0 // need to count how many data points we have

while there are numbers remaining...

 add the next number to the cumulative sum;

 increment numbersSeen;

 move on to the next number;

print (cumulativeSum / numbersSeen)

cumulativeSum: 10

numbersSeen: 2

numbers: [9, 1, 5, 17]

12

Solution: Averaging a bunch of numbers

cumulativeSum <-- 0;

numbersSeen <-- 0 // need to count how many data points we have

while there are numbers remaining...

 add the next number to the cumulative sum;

 increment numbersSeen;

 move on to the next number;

print (cumulativeSum / numbersSeen)

cumulativeSum: 15

numbersSeen: 3

numbers: [9, 1, 5, 17]

13

Solution: Averaging a bunch of numbers

cumulativeSum <-- 0;

numbersSeen <-- 0 // need to count how many data points we have

while there are numbers remaining...

 add the next number to the cumulative sum;

 increment numbersSeen;

 move on to the next number;

print (cumulativeSum / numbersSeen)

cumulativeSum: 32

numbersSeen: 4

numbers: [9, 1, 5, 17]

14

Solution: Averaging a bunch of numbers

cumulativeSum <-- 0;

numbersSeen <-- 0 // need to count how many data points we have

while there are numbers remaining...

 add the next number to the cumulative sum;

 increment numbersSeen;

 move on to the next number;

print (cumulativeSum / numbersSeen)

cumulativeSum: 32

numbersSeen: 4

numbers: [9, 1, 5, 17]

 print --> 8 15

While Loops (6.2)

16

Definition:

A while loop is a program construct that repeatedly executes a list of
sub-statements (known as the loop body) while the loop's expression
evaluates to true.

Each execution of the loop body is called an iteration.
Once entering the loop body, execution continues to
the body's end, even if the expression would become
false midway through.

17

Syntax

while (expression) { // Loop expression

// Loop body: Executes if expression evaluated to true

// After body, execution jumps back to the "while"

}

// Statements that execute after the expression evaluates to false

18

Worked Example: CountUp.java

Read user input using a Scanner as an int

Print out every number 0 that input; then, print "all done!"

public class CountUp {

public static void main(String[] args) {

// read user input

// create variable to track progress towards upper limit

// boolean expression that's true while we have work to do

while () {

// print the current number

// update our control variable

 }

// Afterwards, print "all done!"

 }

}

19

Solution: CountUp.java

import java.util.Scanner;

public class CountUp {

public static void main(String[] args) {

 Scanner scnr = new Scanner(System.in);

int upperLimit = scnr.nextInt();

int currentInt = 0;

while (currentInt <= 0) {

 System.out.println(currentInt);

 currentInt++;

 }

 System.out.println("all done!")'

 }

}

20

Writing Expressions for While Loops

while (____) {

// do something

}

Iterate while... Solution

x is greater than or equal to 0

c is not equal to "stop"

21

Writing Expressions for While Loops

while (____) {

// do something

}

Iterate while... Solution

x is greater than or equal to 0 x >= 0

c is not equal to "stop" !c.equals("stop")

22

Common Mistakes: Wrong Loop Expression

Remember that the loop expression tells when the loop should
iterate, not when it should stop!

int x = 20;

while (x < 10) {

 System.out.println(x);

 x -= 2;

}

int x = 20;

while (x >= 10) {

 System.out.println(x);

 x -= 2;

} 23

Common Mistakes: Looping Infinitely

It should always be possible for our loop expression to evaluate to
false at some point.

// What's the problem here?

Scanner scnr = new Scanner(System.in);

Gradebook gb = new Gradebook("cit591_grades.csv");

String pennkey = scnr.next();

while (!pennkey.equals("STOP")) {

int grade = gb.checkGrade(pennkey);

 System.out.println(pennkey + " has grade " + grade);

}

24

Common Mistakes: Looping Infinitely

It should always be possible for our loop expression to evaluate to
false at some point.

// What's the problem here?

Scanner scnr = new Scanner(System.in);

Gradebook gb = new Gradebook("cit591_grades.csv");

String pennkey = scnr.next();

while (!pennkey.equals("STOP")) {

int grade = gb.checkGrade(pennkey);

 System.out.println(pennkey + " has grade " + grade);

 pennkey = scnr.next(); // this was missing!

}

25

Common Mistakes: Looping Infinitely

Even when you update the loop control variable, you can get subtle
errors...

// Get userVal from input

while (userVal != 0) {

// Put userVal to output

// userVal = userVal - 2;

}

What happens when we start at 6 ?

26

Common Mistakes: Looping Infinitely

Even when you update the loop control variable, you can get subtle
errors...

// Get userVal from input

while (userVal != 0) {

// Put userVal to output

// userVal = userVal - 2;

}

What happens when we start at 6 ?

6 -> 4 -> 2 -> 0
27

Common Mistakes: Looping Infinitely

Even when you update the loop control variable, you can get subtle
errors...

// Get userVal from input

while (userVal != 0) {

// Put userVal to output

// userVal = userVal - 2;

}

What happens when we start at 3 ?

28

Common Mistakes: Looping Infinitely

Even when you update the loop control variable, you can get subtle
errors...

// Get userVal from input

while (userVal != 0) {

// Put userVal to output

// userVal = userVal - 2;

}

What happens when we start at 3 ?

3 -> 1 -> -1 -> -3 -> -5 --> ...
29

Try Some Examples!

What's printed?

x = 0;

while (x > 0) {

 System.out.print(x + " ");

 x = x - 1;

}

System.out.print("Bye");

30

Try Some Examples!

What's printed?

x = 10;

while (x != 3) {

 System.out.print(x + " ");

 x = x / 2;

}

31

Worked Example: ReverseDigits.java

We'll use iteration, modulo, and division to print all the digits of an
integer (useful for homework!)

32

For Loops (6.4)

33

Definition:

A for loop is a loop with three parts at the top that makes it easy to
iterate a specific number of times. The parts are:

Loop variable initialization
Loop expression
Loop variable update

Note that these parts are all actually present in a while loop already.

34

Coming from While Loops

int i = 0;

while (i < 5) {

// loop body

 i = i + 1;

}

for (int i = 0; i < 5; i = i + 1) {

// loop body

}

35

Exercise: What gets printed?

for (int i = 0; i < 6; i++) {

 System.out.println(i);

}

36

Exercise: What gets printed?

for (int i = 0; i < 6; i++) {

 System.out.println(i);

}

0, 1, 2, 3, 4, 5

37

Exercise: How do we get 20 iterations?

for (int i = 0; _____ ; i++) {

// ...

}

38

Exercise: How do we get 20 iterations?

for (int i = 0; i < 20 ; i++) {

// ...

}

39

Worked Example: Interest.java

For a given initial balance and interest rate, write a program that
calculates what the balance will be after ten years.

double initialSavings = 10000.0;

double interestRate = 0.05; // 5%

double currentSavings = ??? // what should this start as?

// define a for loop that runs 10 times

for (????; ????; ????) {

// update the current savings based on the interest rate

// i.e. add the interest on the current amount

// TO the current amount.

}

System.out.print(initialSavings + " becomes ");

System.out.println(currentSavings + " after 10 years.");
40

Worked Example: Interest.java

For a given initial balance and interest rate, write a program that
calculates what the balance will be after ten years.

double initialSavings = 10000.0;

double interestRate = 0.05; // 5%

double currentSavings = initialSavings;

// define a for loop that runs 10 times

for (int i = 0; i < 10; i++) {

 currentSavings += currentSavings * interestRate;

}

System.out.print(initialSavings + " becomes ");

System.out.println(currentSavings + " after 10 years.");

41

FOR vs. WHILE

loop when to use

for number of iterations is known (i.e. some n)

while
num. iterations unknown, like looping until user inputs
"STOP"

42

Challenge Example: BiggestOfN.java

Print the largest value in a list of integers. Assume the first integer
input is the number of integers to expect.
4 9 -10 8 1 9

5 9 -10 8 1 20 20

2 0 -3 0

0 ???

43

